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COMPARISON OF VARIANCE AND COVARIANCE PATTERNS IN
PARALLEL AND SERIAL THEORIES OF TIMING
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Parallel and serial timing processes are analyzed for their account of the dynamics of intertrial
responding in the peak procedure. A strictly serial model, such as the behavioral theory of timing
(Killeen & Fetterman, 1988), does not fit the dynamic correlation pattern in the location and duration
of the middle high-rate responding portion of peak trials. In contrast, the parallel scalar expectancy
theory model, with a sample for memory and threshold, does fit this pattern. A modification of the
serial model is presented that also accommodates the within-trial covariance pattern. The modification,
which is formally equivalent to a model for human tapping (Wing & Kristofferson, 1973), entails the
addition of concurrent processes operating in parallel with serial timing.
Key words: scalar expectancy, behavioral timing, peak procedure, parallel and serial processing

Much past theoretical effort has been de-
voted to understanding a variety of phenomena
in animal learning in terms of molar concep-
tions of the processes underlying the behavior.
Central to this effort has been the character-
ization of responding as adapted to the time
and conditions of reinforcement. Two largely
successful yet conceptually different treat-
ments of the static features of adjustment to
the time of reinforcement have been scalar
expectancy theory (SET; Gibbon, 1977; Gib-
bon & Church, 1990) and an alternative ap-
proach by Killeen and Fetterman (1988), the
behavioral theory of timing (BeT). The pur-
pose of the present report is to cast these the-
ories in their most general form and contrast
their treatment of the within-trial dynamics of
a timing performance.

According to SET, timing processes involve
monitoring current time and contrasting it with
memory for times that have been associated
with reinforcement in the past. The monitor-
ing of current time (clock process), the memory
process by which subjects “know” the target
time, and the decision process ensuring a con-
servative behavioral strategy with respect to
the contingencies of reinforcement are concur-
rent processes. They are cognitive processes in
the sense that continuous processing is as-
sumed that is not reflected in behavior until
criterion decision thresholds are met. In con-
trast, Killeen and Fetterman (1988) argue that
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such processes are not really necessary. BeT
is characterized as parsimonious in not re-
quiring the memory, detection, and threshold
processes embodied in SET. It posits a simple
system in which a Poisson process generates
successive states, some of which become as-
sociated with reinforcement. Although the
mechanism (and degree) of association are of-
ten described with a rather broad brush, the
central thrust of this system is sufficient to
account for much timing data.

SET and BeT differ in at least two impor-
tant ways. First, they differ with respect to
their explanation of what we have called the
scalar property—a Weber law-like feature of
timing data that arises in a wide variety of
settings. It may be described empirically as a
relativistic property of time-based perfor-
mance that results in a common form for the
performance measure when different absolute
times are normalized. That is, the data su-
perpose when plotted in relative time.

According to scalar expectancy theory (cf.
Gibbon, in press; Gibbon & Church, 1984,
1990), this property may arise from several
different sources of variance in the processing
system that records, remembers, and compares
times. The common feature of these scalar
sources is that they act multiplicatively on the
representation of reinforcement time. In con-
trast, the behavioral theory of timing accounts
for the scalar property by a change in the rate
of the Poisson pacemaker underlying succes-
sive state changes. The pacemaker is controlled
by the overall rate of reinforcement in the sit-
uation, and runs at a speed proportional to this
rate. We believe that this difference between
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Fig. 1. Peak functions averaged over 4 birds studied at 30-s and 50-s peak procedures. The top panel shows data
in absolute time, 7 the bottom shows normalized data plotted relative to time of the peak, 7*. Normalization occurred
in two steps. First each subject’s peak function was smoothed to obtain maximum and minimum rates and time of the
maximum (peak time). Then each function was taken as a proportion of its range, R/(Ruu — Rui,) and plotted at
time relative to peak time (7/7™*), before averaging across subjects. This transformation controls for individual
differences in peak times and maximum and minimum (operant level) rates. Data are from the experiment reported
in part by Gibbon and Church (1990).
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Fig. 2. A sample trial from the 30-s peak procedure. Responding tends to be bunched around the time of rein-
forcement. The beginning (s,) and end (s;) of the high-rate period are indicated with arrows.

the two accounts is testable, but it is not our
purpose to do so here. Rather, we will con-
centrate on a second dynamic dimension along
which the accounts differ.

Parallel versus Serial Processing

A second difference between the theories is
that SET is a parallel model, whereas BeT is
a serial model. We contrast the parallel and
serial approaches with their treatment of the
peak procedure. In the peak procedure, re-
sponding is reinforced on some percentage of
trials (food trials) after a given fixed interval
has elapsed from the signaled onset of the trial.
On other trials (“peak” or “nonfood” trials),
the signal simply stays on for a long period of
time and no food is presented. The procedure
was originally devised by Catania (1970) and
was subsequently studied by Roberts (1981),
Meck and Church (1984), and others (e.g.,
Gibbon & Church, 1990). Responding on peak
trials tends to occur around the time when
reinforcement would be due on food trials, and
is roughly symmetric on either side of this peak
time (though often slightly skewed to the right;
cf. Gibbon, Church, & Meck, 1984). An ex-
ample taken from Gibbon and Church (1990)
shows peak functions pooled over 4 birds stud-
ied under two conditions, a 30-s and 50-s peak
procedure in which responding was reinforced
at the fixed interval on half the trials. The
other half of the trials lasted for three times
the fixed interval, and no food was given. Re-
sponding increased to a peak at about the time
of reinforcement and declined in a roughly
symmetric manner after that time, as seen in

the top panel of Figure 1. The two functions
approximately superpose when normalized and
plotted in time relative to the time of the peak
rate, as shown in the bottom panel. This is the
scalar property.

Although responding appears to follow a
smooth transition through the peak, Gibbon
and Church (1990) analyzed the behavior in
individual trials as a two-state process. Re-
sponding occurred at a low rate in State 1,
changed to a high rate at some point prior to
the time of reinforcement, and changed back
again to a low rate at some time after the
reinforcement time. An example from a 30-s
peak trial is shown in Figure 2. At time zero,
the keylight is turned on. Responses are in-
frequent until about Second 15, and then occur
rather bunched around the time of reinforce-
ment, dropping to a low rate after about Sec-
ond 45. Indicated in the figure is a start (s;)
and stop time (s,) for the period of high-rate
responding. We argued that the smooth bell-
shaped peak functions from this procedure are
produced by a discrete two-state process, but
one that has variable locations and durations
on different trials. Averaging these individual
trial functions produces the smooth curve. The
idea is an extension of Schneider’s early, sem-
inal “break-run” analysis of fixed-interval
performance (Schneider, 1969). We simply add
a subsequent break back to a low rate on peak
trials when reinforcement is not forthcoming.

Gibbon and Church (1990) presented an
analysis of break-run-break patterns in indi-
vidual trials. The start and stop times on each
trial were obtained from a least squares fit of



396

JOHN GIBBON and RUSSELL M. CHURCH

u(T)-p(S’)

H(SY)

w

H(S*)

o

w

SUBJECTIVE TIME

AONVd3HOSId
JAILV13H

]
b

START STOP
REAL TIME

Fig. 3. Schematic representation of the linear time sense assumed in SET. Subjective time accumulates linearly in
real time, and the high-rate state begins when the acccumulation crosses a lower threshold (—B on the relative scale)
and continues until it crosses an upper threshold (+B). The right-hand ordinate represents the relative discrepancy
between the representation of the current time and the reinforced time. The dashed function is the absolute value of
the relative discrepancy (right-hand ordinate). In this example, all values are taken at their average [u(.)]. On the
bottom axis, the stippled area represents the high state of responding (adapted from Gibbon & Church, 1990, Figure

10).

three horizontal line segments to response-rate
data in individual time bins. The reader is
referred to Gibbon and Church (1990) for fur-
ther elucidation of the method. It is useful for
this analysis to define for each trial four sta-
tistics obtainable from the break-run-break
pattern: the time of the start (s,), the time of
the stop (s,), the spread (d, the duration of the
high state between s, and s,), and the middle
(5, the arithmetic center of the high state). These
measures are shown in the schematic repre-
sentation in Figure 3.

Application of SET to the peak procedure.
According to scalar expectancy theory, subjec-
tive time increases linearly during a trial, as
in the diagonal function of Figure 3. Subjects
monitor time during the trial and begin re-
sponding (that is, go into the high-response
state) when the subjective representation of the
current time is close enough to their memory
for the reinforced time. The memory for time
of reinforcement here is taken as u(S*), and
responding begins when the current time be-
comes greater than a threshold value (—B on
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the relative scale). Subjects continue high-rate
responding until that threshold is exceeded on
the far side of the remembered reinforcement
time (+B). An alternative representation is
shown with the dashed function referred to the
relative discrepancy axis on the right. This
function plots the absolute value of the dis-
crepancy between the current time, u(7), and
the remembered time, u(S*), relative to u(S*).
On the lower axis, the start and stop time
bracketing reinforcement time is shown. The
theory argues that variability in the speed with
which the current time is accumulated, in the
memory for the reinforcement time and in the
threshold for responding, may all contribute
to produce a variety of start and stop times on
different trials. (A continuous version of start
and stop times on each trial might identify
inflection points in a smooth rise to a high rate
and a subsequent fall to a low rate. For our
present purposes either characterization will
do, although we believe, and the data confirm,
that the two-state process is a better first-order
description of individual-trial performance.)

To summarize, at the outset of each trial,
subjects sample from their memory for the re-
inforcement time, and during the elapsing in-
terval, contrast this time with their represen-
tation of the current time. They respond at a
high rate when their memory of the reinforced
time and their representation of current time
are “close enough” to each other by a threshold
criterion. Hence at least three parallel pro-
cesses—memory search, monitoring of current
time, and selection of a response threshold—
are concurrently undertaken in such a way that
a comparison between past and present, so to
speak, is continuously available.

Application of BeT to the peak procedure. The
behavioral theory of timing, and indeed any
strictly serial renewal process, is to be con-
trasted with the parallel system in that deci-
sions are made singularly and successively. The
general serial-process approach to this perfor-
mance would first determine a start time, then
a duration for the high rate of responding,
followed in turn by the low state. As an ex-
ample, consider the following adaptation of the
Killeen-Fetterman (1988) account for this sit-
uation. We imagine that over a large number
of training trials, reinforcement has impinged
upon a subset of m states (we will call them
states n + 1 through n + m) turning them
into “hot” states, engendering high response
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Table 1

Variance and covariance values for within-trial statistics
from Gibbon and Church (1990).

5 Sz d 5
Start, s, 86.10
Stop, s, 32.30 114.86
Spread, d —48.05 77.12 127.13
Middle, § 56.85 72.20 15.04 68.70

rates. This adaptation of their account is of
course ad hoc, and we simplify it further by
assuming that between the first reinforcement-
associated state and the last reinforcement-as-
sociated state, there exist no states not asso-
ciated with reinforcement. Over long training
this will be true but, of course, over long train-
ing it will also true be that all states in the
process are associated with some reinforce-
ment. Hence our adaptation really requires an
implicit threshold for high-rate responding. If
a state has been associated with reinforcement
sufficiently often (or, perhaps, with a suffi-
ciently high probability) it becomes a high-
rate state, and there is a collection of these
spanning the middle range around reinforce-
ment, as shown in Figure 4.

We assume that there exists such an un-
specified threshold, identifying state n as the
transition point from low to high rates, and
identifying state n + m as the last hot state.
The first n states do not occasion high-rate
responding, the next m states do, and thence-
forth (from n + m + 1 on) responding again
resumes a low rate. Under these assumptions,
the distribution of start times is gamma (n-
fold), the distribution of stop times is gamma
(n + m-fold), and the distribution of spreads,
the duration of the high state, is also gamma
(m-fold). Given n and m greater than about
five, these forms are compatible with the data
distribution forms. They are roughly sym-
metric, but have some skew, with the distri-
bution of s; more skewed than that of s,.

Intertrial Dynamics

Average variance and covariance patterns
from the peak experiment reported in part in
Gibbon and Church (1990) are presented in
Table 1 for the four measures. Several features
of these data are diagnostic for a discrimination
between parallel and serial models. First, the
variances (main diagonal) show that the vari-
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Fig. 4. Schematic representation of BeT for the peak procedure. The Poisson process initiates successive states
with random, exponentially distributed durations. It is assumed that after n-many of these, a set of m-many “high”
states ensues during which subjects respond at a high rate, followed in turn by a low rate in succeeding states.

ance of s, is greater than s, and the variance
of d is greater than 5. The covariance pattern
shows a positive start-stop covariance and a
negative start-spread covariance. All subjects
showed this pattern. The other covariances are
less diagnostic but are included for complete-
ness. We will concentrate here on the start-
stop and start-spread values.

Variance. The variance patterns expected
for the parallel model (SET) and the general
serial model are shown in Table 2. A memory
sample and a threshold sample are assumed
for SET, and determinations of ¢ (start time
or s;) and of A (hot time or high-rate duration,
d, ending in s,) are assumed for the serial
model. These correspond to the first n states
and the next m states in BeT.

The memory sample, x, for the parallel
model is assumed to have a mean close to the
reinforcement time, E(x) = p(S*), and vari-
ance, o,2. The threshold sample b, which is

independent of the memory, has a mean
B and variance ¢,2. From Figure 3 we can
see that the lower threshold is reached

when y(s,)T—x_ =b,or (1 — b)x = u(sy).

Similarly, the upper threshold for stopping re-
sponding is met when (1 + b)x = u(s,). This
produces a variance pattern in which s,, s,,
and d reflect both threshold and memory vari-
ance, but § does not. The midpoint between s,
and s, reflects only memory variance. When
the lower and upper thresholds depend on the
same sample, they cancel in the middle statis-
tic. (The variance pattern is unchanged if one
permits an additional constant, say A, to enter
into one of the thresholds allowing an asym-
metric peak time #S*.)

The variance pattern for the serial model is
shown on the right in Table 2. In contrast to
the parallel model, the serial model has a very
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Table 2. Variance Patterns for Parallel and Serial Models

Parallel (SET) Serial
s | 02(cpes?) + (19) oy o
swp | 92 (52+57)+ (1) 02 oF + o
spread | 40b7 (0,3+57) + 48202 O’
Middie 0, G2 + 302
Constraints: csz > 0512 os: > 02 > csf
Gs: > o2
Osfz 62 + o2

simple form, with the sample for the start time
being the only contributor to variance of s,,
and the sample for the high-state duration be-
ing the only contributor to variance of the
spread. The other two statistics, stop time and
middle, reflect the sum of both variables.

Below the variance listings are some qual-
itative and quantitative predictions entailed by
the parallel and serial models. For the parallel
model, all that may be concluded with cer-
tainty from the variance pattern is that stop
variance must be greater than start variance.
For the serial model, several additional con-
straints are available. Stop variance must ex-
ceed start variance, and the variance of the
middle must lie between these two. Moreover,
stop variance must exceed the variance of the
spread. A considerably stronger prediction is
available for this model as well: The variance
of the spread must be precisely the difference
between stop and start variance, because start
and spread are determined successively and
independently.

Figure 5 shows variance patterns for indi-

Note: For BeT, G2 = nj?
and G, 2 = mu2, where

H = mean state residence time

vidual birds from the experiment reported in
part in Gibbon and Church (1990). Note that
stop variance does exceed start variance as re-
quired by both models, but the variance of the
middle does not lie between these two. Rather,
it is less than either. The stronger constraint,
implied by the independence of the initial low
state and the high state for the serial model,
also is not met by these data. The prediction
for the stop variance is shown by the dark bar
(§2)- Stop variance should be simply the sum
of the start and spread variance, and it is clear
that the obtained s, variances fall below this
value. This is due to the negative covariance
between start and spread, analyzed next.
Covariance. The pattern of covariation
among the four measures is a still more pow-
erful discriminator between these models. We
will briefly recapitulate the central features of
the correlation patterns between start and stop
and start and spread (the major diagnostic syn-
drome) for the parallel SET model. The reader
is referred to Gibbon and Church (1990) for
a more extensive treatment. In Figure 6 the
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Fig. 5. Variance patterns of the four measures for individuals, and the group mean. The dark bar shows the value

of stop variance predicted by the serial model (s5).

pattern expected from variation in memory
alone is shown on the left, for successive trials
in which samples from memory vary from
shorter than the reinforcement time to longer
than the reinforcement time. The threshold is
assumed to be constant. The mechanism de-
scribed in Figure 3 produces, as may be seen,
a series of broader high states as the memory
sample increases. Increases in the estimate of
reinforcement time induce both a later start
and a later stop. It is readily seen that this
entails a perfect positive correlation when

memory variance is the only contributor to
variability.

On the right side of Figure 6, we show the
pattern expected when the memory contributes
no variance and threshold contributes all the
variance. Here the middle remains constant
(set here at reinforcement time), but start and
stop are perfectly negatively correlated. Vari-
tion in the threshold that produces a conser-
vative (early) start time produces a correspond-
ing conservative (late) stop time and vice versa.
Variance in memory and variance in threshold
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Fig. 6. Schematic representation of start, stop, and spread durations on successive trials for SET. On the left,
memory estimates of reinforcement time vary (x,, x,, x;). Increasing estimates induce increasing start and stop times
and increasing spreads. On the right, memory estimates are assumed constant at reinforcement time, and variation is
induced by different thresholds (b,, b,, b;). Threshold variation induces negative covariation between start and stop

times, as well as between start and spread.

work in opposite directions for the correlation
pattern, with memory inducing a positive s,,s,
correlation and threshold inducing a negative
51,52 correlation.

The correlation pattern for s, and spread,
d, is essentially the same. Memory variance
induces a positive correlation between s; and
d—Ilate starts are accompanied by long hot
times. Threshold variance induces a negative
correlation between start and spread—late
starts produce shorter hot times. The two
sources of variance again work in opposite di-
rections for the expected correlation pattern.
More important, however, it may be shown
that the s,,s, positive correlation is more robust
than the s,,d positive correlation for memory
variance. Correspondingly, the s,,s, negative

correlation induced by threshold variance is
less robust than the s,,d negative correlation
induced by this source of variance. Hence, when
both sources of variance are operating together,
the correlation pattern expected is moderate
positive for s;,5, and moderate negative for s,,d.
The variance and correlation forms are derived
in the appendix, where this pattern is analyzed
quantitatively.

This pattern is not expected from the serial
model. In the serial model, other things being
equal, a late start produces a late stop. Because
the sample for the hot time is determined in-
dependently from the random variable deter-
mining starts, a late start simply adds time to
the average stop time, and hence a positive s;,s,
correlation is expected. More important, how-
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Fig. 7. Correlation patterns for individual birds. Start, stop correlations, p(s,,s,), are on the left, and start, spread

correlations, p(s,,d), are on the right.

ever, the start-spread correlation expected from
a serial model is in fact zero, because the two
processes are independent.

In Figure 7 the start-stop and start-spread
correlations for the same birds are shown. In
every case the start-stop correlation is positive
and the start-spread correlation is negative.

To summarize thus far, the variance/co-
variance data do not support the general serial
model with two random samples taken in suc-
cession for start and duration of the high state.
The data pattern is accommodated, however,
by the parallel model, SET, with two samples,
one from the memory for the target, time of
reinforcement, and a second for a threshold
used to determine when to enter and exit the
high-response state.

An Extension of the Serial Model

In the conference that this issue memori-
alizes, Gibbon presented a way to salvage the
general serial model, though at some cost. The
method transforms the serial model into a half
parallel, half serial, or if you will, quasi-serial

model by adding concurrent processing stages
after the determination of the trigger to start
the high state and the trigger to stop the high
state. These induce lags in the actual start and
stop times, comprising a third and fourth ran-
dom variable.

This is a classical time-series model (Box &
Jenkins, 1970; Glass, Willson, & Gottman,
1975). It was developed by Wing and Kris-
tofferson (1973) for serial tapping perfor-
mances in humans, and was independently re-
discovered by Pittendrigh and Daan (1976) in
a circadian timing model in which the lag be-
tween the start time and responding was taken
as a “wake-up” time for activity-rest cycles. It
has also been used to account for the interlick-
interval distribution of rats drinking and the
interresponse-interval distribution of humans
tapping in synchrony with a metronome
(Church, Broadbent, & Gibbon, in press). The
model is shown in schematic form over the
right-hand column of Table 3. Here time ¢
initiates a random delay—we may call it an
instructional delay (:;)—before the behavioral
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Table3. Variance and Correlation Pattern for Serial and Quasi-Serial Models
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consequence of high-rate responding is initi-
ated. Concurrently, in parallel with this, the
spread determination is unfolding, and at its
termination at time ¢ + A, a second instruc-
tional lag (i,) ensues before the cessation of
responding. The second lag we might call the
“go-to-sleep time” before behavior indeed
sleeps in the final low state.

Notice that the original serial model has
been removed, if you will, one layer below the
behavior (perhaps encouraging some cognitive
nomenclature). The instructional system that
actually effects the behavior takes some time,
and it is this time that induces a negative cor-
relation between start and spread, via regres-
sion to the mean.

In Table 3 we present the variance and
correlation pattern expected for the start-stop
and start-spread correlations for both the serial
model and the more complex quasi-serial model
on the right. To do the job intended, the quasi-
serial model must have z, and ¢, independent.
A moment’s reflection will show that if they
are the same, albeit randomly varying from

trial to trial, then the correlation prediction
for start-spread remains at zero. However, as
long as independence holds between these two
delays ensuing in parallel with the hidden layer,
the correlations for start-stop and start-spread
are qualitatively consonant with the data pat-
terns. (The appendix describes quantitative
limit behavior of these correlations that may
be strained by some data patterns.)

This adjustment adds parallel processing
stages to the original serial model with the
concomitant intellectual cost in parsimony: The
two-variable serial model becomes a four-vari-
able quasi-serial model with means and vari-
ances for each variate. On the other hand,
parsimony may not be the ombudsman of choice
in a serious attempt to address a truly broad
variety of dynamic as well as static response
forms. For example, although on its face the
quasi-serial model requires four independent
random variables and hence eight parameters
(plus a threshold, perhaps, for defining the
high states), one might readily imagine that
the instructions to start and stop induce delays
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drawn from the same distribution, reducing
the parameter set by two.

Also, although we have advertised SET as
qualitatively accommodating these data, a good
quantitative fit may require more than one
threshold. Moreover, the degree to which the
mean values enter into these autocorrelation
functions has not been analyzed in its full ex-
tent. For example, Table 3 involves only vari-
ances for the quasi-serial model, whereas for
the parallel model mean values (Table 2 and
the appendix) enter as well because of their
role in product variance calculations. Thus,
dynamic details force at least some parallel
processing, but the details of that kind of pro-
cessing are not themselves forced. We cannot
rule out a quasi-serial model.

An alternative model that is conceptually
similar to the parallel model but formally sim-
ilar to the quasi-serial model is instructive.
Imagine a theory in which a sample from
memory is chosen for the target time, but then
a spread value is chosen independently from
a different distribution, and with it some added
random error at the beginning and the end.
Such a model is conceptually close to SET but
formally close to the quasi-serial model. Like
the quasi-serial model, it induces a negative
correlation between s, and d via regression to
the mean. Again also, there is some cost in
complexity because four variables seem to be
required, although some reduction in this com-
plexity may be afforded if the added errors are
drawn from a single distribution.

Conclusion

SET is by nature a parallel processing struc-
ture. General renewal processes, and in par-
ticular BeT, in contrast, are by nature serial
processing structures. They therefore do not
predict the dynamic correlation patterns seen
in the peak procedure. However, a modifica-
tion of the serial model with partial parallel
components is feasible and does accommodate
the data.

In summary then, the variance and covari-
ance patterns in the trial-by-trial dynamics of
timing in the peak procedure require some
kind of parallel processing mechanism under-
lying the central features of the data. We argue
that this requirement takes these mechanisms
back into hidden layers of processing often
thought of as cognitive. Moreover, serial mod-

JOHN GIBBON and RUSSELL M. CHURCH

els in general must come to grips with the
details of the mnemonic process whereby the
high-rate states bracketing the target time are
identified and remembered. Perhaps once such
identifications are made, it will become moot
whether we call these mechanisms cognitive
or behavioral—they are certainly parallel.
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APPENDIX
Variance and Covariance Correlations

SET. According to SET the variances and
covariances for the statistics we have identified
are obtained from two independent samples of
random variables. One sample, x, represents
the estimate of the remembered target time. It
has a mean, which we will assume to be cen-
tered on the true time, S*, and a variance, ¢,2.
The second variable, b, is an independent sam-
ple from a distribution of threshold values cen-
tered on a mean, B (0 < B < 1), which de-
termines when the current time is close enough
to the target time to warrant high-rate re-
sponding. From Figure 3 we see that the lower
threshold is met when s, = (1 — b)x (assuming
a negligible intercept in the linear subjective
time function). Similarly, the upper threshold
is met when s, = (1 + b)x. To obtain the
variance of start and stop times, we use the
well known relation for the variance of the
product of two independent random variables,

1)

(cf. Gibbon, 1977). Using the multiplication
Rule 1 we have

Var(s,) = ¢,%(0,2 + S*?) + (1 — B)%,?
Var(s,) = 0,%(0,2 + S*?) + (1 + B)%.,2,

Var(xy) = 0,%,*> + p%0,? + u,%.?

2)
3

as shown in the top two rows of Table 2. The
difference, d, is s, — s; = 2bx so its variance is

4

by application of the same rule. The variance
of the middle is simpler, as

Var(d) = 4¢,%0,> + S*?) + 4B%. 2,

§=(1)(s; + 5) = x,
so that

Var(3) = ¢,% (5)
The random variable, b, cancéls in the sum of
s, and s, so that the variance of the middle
reflects only variance of the memory for the
target time.

Equations 2 through 5 are the entries in the
column for the parallel model, SET, in Table
2. The entries for the serial model follow im-
mediately from the independence of the ran-
dom variables determining the start (s; = ¢),
and the spread (d = h).

p(s1,5,). For the determination of correla-
tion, we use the well-known relationship be-
tween the variance of the sum of two random
variables and their covariance:

Var(x + y) = 0,2 + 0,2 + 2Cov(x, y),
or
2Cov(x, y) = Var(x + y) — (s, + 0,7). (6)
The covariance in turn is
Cov(x, y) = p(x, y)o.0,, ©)
so that

Var(x + y) — (6,2 + 0,%)
20,0, ’

p(x, y) = (8)

SET. It is convenient for the correlation cal-
culations to express the three free parameters,
a2, 6,2, and B, in terms of coefficients of vari-
ation. Let the lower (/) and upper (u) thresh-
holds be defined as/ =1 —bandu=1 + b,
withmeansL=1 - Band U=1 + B and
variance, 0,2 Then define

O, Oy O
=X =-  and == 0
Y=g M= Tw=g ( )
T'he variance of the sum s, + s, = 2§ is

found from Equation 5 as simply 4,2, or, us-
ing the conventions for U and L,

Var(s, + s,) = ¢,2(U + L)2

Using U and L in the variances of s, and s,
(Equations 2 and 3), the covariance formula,
Equation 6, yields

2Cov(s;,s;) = 0,(U + LY — 26,2(s,2 + S*?)
= 62U + L2).

Collecting terms,

2Cov(sy,s,) = 6,2(2UL) — 26,%(0,2 + S*?).
(10)

Finally, using the right-hand side of Equation
10 in Equation 8, and dividing numerator and
denominator by 2UL, we obtain the correla-
tion in terms of the coefficients of variation,
Equation 6:
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p(51,52)

1
l—mu(H—,)
Vx
1 1]
1442 1+F 1+4,2 l+:y—2

11)

p(s1,d). A similar development is used for
the start-spread correlation implied by SET.
Note that s, + d = s, so that

2Cov(s,,d) = ¢,%(c,2 + S*?) + U?%:,2
= 0,2(0,2 + S*?) — L2
— 40,%(0,2 + S*?)
- U - Ly,

or
2Cov(s;,d) = 20,2L(U — L)
— 40,%(0,2 + S*?). (12)
For this correlation, we define a difference
coefficient of variation, v_,
- 20’b _ 2
T U-L 1 1 )

Y- (13)

Yu Y

Then using the right-hand side of Equation
12 in Equation 8, and dividing numerator and
denominator by 2L(U — L), we have

p(sl,d)
1
1—vry_ (1 + ——2)
_ Y=

RV () (e )|

(14)

Note that Equation 14 for start-spread is very
similar to Equation 11 for start-stop, with
v- playing the role of v,. The correlations
behave similarly, with
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p(s1,52) —_— lasog, » 0
p(shd)} {_1 as v, — 0.

These limits are approached at very different
rates, however. Notice that the definition of vy_
in Equation 13 means that generally, y_ >
Y., which permits p(s,s,) > 0 > p(s,,d). For
example, the means of the data in Figure 7
are r(s,5,) = .34 and r(s,,d) = —.48. These
are readily accommodated by B ~ .2, ¢, ~ .15
and v, ~ .2 (v;, v, in the neighborhood of .19,
.13). These values are common in past appli-
cations.

It should be noted that the data may strain
this model quantitatively if these two corre-
lations are both large in absolute value. The
data (Figure 7) do not show extreme values
and hence are accommodated, although more
extensive data sets may force modifications in
SET (and the quasi-serial model, see below).

(15)

Serial Models

The serial and quasi-serial models in Table
3 are analyzed in an analogous fashion. The
serial model calculations are immediate. The
quasi-serial model has s, = ¢ + ¢;,s, =t + A
+ i andd =h + i, — ;. Hence, if t; = 1,,d
= h and so p(s,,d) = 0, disqualifying this vari-
ant as in the strictly serial model. Note also
that p(s,,d) —= O if both o; — 0, because this
too reverts to the strictly serial case.

Thus, and i, must be independent samples.
The correlations are then obtained in exactly
the same manner as above, using Equations 6
and 8 for the variance and covariance of sums
of random variables. The calculations are
straightforward and need not be detailed here.

Notice that the equal instructional vari-
ances, p(s;,d) = —1/V/2 and p(s,,5,) = 0 as g,
- 0. The data may strain this quantitative
feature somewhat, because subjects with large
negative s,,d correlations may not necessarily
have small s,,s, correlations.



